Calculating hydroxyl radical scavenging term ST

Bas Wols, Chengjin Wang, Olya Keen

During UV/H_2O_2 treatment, the degradation of a probe compound in a water matrix with scavengers S_i is described by the following simplified reaction scheme:

Photolysis reactions:

Probe + hv \rightarrow products

 $H_2O_2 + hv \rightarrow 2 HO^{\bullet}$

Second order reactions between OH. and probe or background components:

HO \cdot + probe \rightarrow products

HO[•] + S_i
$$\rightarrow$$
 products

The rate equation for HO $^{\bullet}$ (M s⁻¹) is written as:

$$\frac{d[HO^{\bullet}]}{dt} = k_{photo,HO}[H_2O_2] - \sum k_{Si}[HO^{\bullet}][S_i] - k_{HO,probe}[HO^{\bullet}][probe] \qquad Eq. 1$$

where $k_{photo,HO}$ is the photogeneration rate constant of HO[•] from H₂O₂ (s⁻¹)), k_{Si} the second-order HO[•] reaction rate constant of a background scavenger (M⁻¹ s⁻¹) and $k_{HO,probe}$ is the second-order HO[•] reaction rate constant of a probe (M⁻¹ s⁻¹).

By introducing a total scavenging rate constant as $ST = \sum k_{Si}[S_i]$ (note that scavenging by H₂O₂ is included in ST, but can be subtracted in the end to determine the innate ST that comes from background matrix alone), Eq. 1 becomes:

$$\frac{d[HO^{\bullet}]}{dt} = k_{photo,HO}[H_2O_2] - ST[HO^{\bullet}] - k_{HO,probe}[HO^{\bullet}][probe]$$
 Eq. 2

The rate equation for the probe equals:

$$\frac{d[probe]}{dt} = -k_{photo,probe}[probe] - k_{HO,probe}[HO^{\bullet}][probe] \qquad Eq. 3$$

where $k_{photo,probe}$ is the photolysis rate constant for the probe (s⁻¹).

To simplify the mathematics, a few assumptions are made:

- Quasi-steady state HO[•] concentration, *dHO[•]/dt=0*
- H₂O₂ consumption is small, so that H₂O₂ remains constant over time
- ST remains constant over time, *dS_i/dt=0*
- The HO[•] scavenging by the probe is small compared to ST, $k_{HO,probe}[probe] \ll ST$
- The UV absorption remains constant over time

With these assumptions, the steady state HO[•] concentrations becomes (from Eq. 2):

$$[HO^{\bullet}]_{ss} = \frac{k_{photo,HO}[H_2O_2]}{ST} \qquad \qquad Eq. 4$$

The solution for the probe concentration over time becomes after integration of Eq. 3 over time *t*:

$$ln\left(\frac{[probe]_t}{[probe]_0}\right) = -k_{photo,probe}t - k_{HO,probe}\frac{k_{photo,HO}[H_2O_2]}{ST}t \qquad Eq. 5$$

Photogeneration rate constants

The photogeneration rate constant ($k_{photoHO}$, s⁻¹) either for HO[•] from H₂O₂ can be calculated from the photogeneration rate ($r_{photo,HO}$ = $k_{photo,HO}$ ×[H₂O₂], M s⁻¹). Let us consider a small volume of water. The Beer-Lambert law states that the radiation through a small volume with depth Δx diminishes logarithmically with the (decadic) absorption coefficient:

$$E'_{p}(x + \Delta x) = E'_{p}(x)10^{-a\Delta x} \qquad Eq. 6$$

Where $E'_{p}(x)$ is the photon fluence rate (mEinstein cm⁻² s⁻¹) at a depth x (cm), and a the total absorption (cm⁻¹) of all compounds in the water ($a = \sum \varepsilon_i [C_i]$).

The photogeneration rate in this small volume for HO[•] is obtained by considering the absorbed photons (first law of photochemistry states that only the absorbed photons could bring a chemical reaction) by H_2O_2 in the small volume:

$$r_{photo,HO}(x) = -\Phi_{HO}\left(\frac{\varepsilon_{H_2O_2}[H_2O_2]}{a}\right) E'_{p}(x) \frac{(1-10^{-a\Delta x})}{\Delta x}$$
 Eq. 7

Where *a* is the total absorption of all compounds (decadic based) in the water ($a = \sum \varepsilon_i[C_i]$) (cm⁻¹).

A similar expression is used by Beltran et al. (1995), Lopez et al. (2003).

The term $\left(\frac{\varepsilon_{H_2O_2}[H_2O_2]}{a}\right)$ represents the absorbed photons by H₂O₂ over the total absorbed photons in the small volume, $\varepsilon_{H_2O_2}$ represents the molar extinction coefficient of H₂O₂ (M⁻¹cm⁻¹) and Φ_{HO} the quantum yield (mol/Einstein) of HO[•].

If the product is $a\Delta x$ small (<0.01), the term $1 - 10^{-a\Delta x}$ can be written as $a\Delta x ln(10)$,^a so that Eq. 7 becomes:

$$r_{photo,H0}(x) = -\ln(10)\Phi_{H0}\varepsilon_{H_2O_2}[H_2O_2]E'_p(x) \qquad Eq. 8$$

In a well-stirred system, e.g. a collimated beam, where the concentration of H_2O_2 is constant over the depth, the photogeneration rate constant ($k_{photo,HO}$, s⁻¹) can then be written as:

$$k_{photo,HO}(x) = -\ln(10)\Phi_{HO}\varepsilon_{H_2O_2}E'_p(x)$$
 Eq. 9

By integrating Eq. 9 over the depth (L, cm) of the sample, the volume averaged photogeneration rate constant becomes:

$$k_{photo,HO} = \frac{1}{L} \int_{0}^{L} k_{photo,HO}(x) = -\ln(10) \Phi_{HO} \varepsilon_{H_2O_2} \frac{1}{L} \int_{0}^{L} E'_p(x) dx$$
$$= -\ln(10) \Phi_{HO} \varepsilon_{H_2O_2} \frac{1}{L} \int_{0}^{L} E'_{p0} 10^{-ax} dx$$
$$= -\Phi_{HO} \varepsilon_{H_2O_2} E'_{p0} \frac{1 - 10^{-aL}}{aL}$$
Eq. 10

where E'_{p0} is the incident photon fluence rate (mEinstein/cm²/s) on the water surface.

Using the expression of the photogeneration rate constant, the degradation of the probe (Eq. 5) can be written as:

^a Taylor series expansion: $e^{x} = 1+x$, $10^{x}=e^{(-\ln(10)x)}=1-\ln(10)x$, $1-10^{adx} = \ln(10)adx$

$$ln\left(\frac{[probe]_{t}}{[probe]_{0}}\right) = -E'_{p0}\frac{1-10^{-aL}}{aL}t\left(\Phi_{probe}\varepsilon_{probe} + \Phi_{H0}\varepsilon_{H202}\frac{k_{H0,probe}[H_{2}O_{2}]}{ST}\right)$$
Eq. 11

The average fluence rate (Bolton and Stefan, 2002) is defined as:

$$H' = \frac{tU_{\lambda}}{L} \int_{0}^{L} E'_{p}(x) = \frac{tU_{\lambda}}{L} \int_{0}^{L} E'_{p0} 10^{-ax} dx = \frac{tU_{\lambda}}{aL} E'_{p0} \frac{1 - 10^{-aL}}{\ln(10)}$$
 Eq. 12

Where U_{λ} represents the energy of a photon (J Einstein⁻¹). Applying the definition of the fluence rate, **Error! Reference source not found.** becomes:

$$ln\left(\frac{[probe]_t}{[probe]_0}\right) = -\ln\left(10\right)\frac{H'}{U_{\lambda}}\left(\Phi_{probe}\varepsilon_{probe} + \Phi_{HO}\varepsilon_{H2O2}\frac{k_{HO,probe}[H_2O_2]}{ST}\right) \quad Eq. \ 13$$

If the direct photolysis of the probe is measured as the fluence-based rate constant (k_{UV} , cm²mJ⁻¹), the degradation of the probe is equal to:

$$ln\left(\frac{[probe]_t}{[probe]_0}\right) = -\left(k_{UV} + \ln\left(10\right)\frac{\Phi_{HO}\varepsilon_{H2O2}}{U_\lambda}\frac{k_{HO,probe}[H_2O_2]}{ST}\right)H' \qquad Eq. \ 14$$

From the measured probe degradation, and fluence rate of the collimated beam system (using a Bolton et al. (2015) spreadsheet), the scavenging rate constant can be calculated from Eq. 14:

$$ST = \frac{\ln (10) \frac{\Phi_{HO} \varepsilon_{H2O2}}{U_{\lambda}} k_{HO,probe} [H_2O_2] H'}{-ln \left(\frac{[probe]_t}{[probe]_0} \right) - k_{UV} H'}$$
Eq. 15

Using $k'_{HO} = -\frac{ln(\frac{[probe]_t}{[probe]_0})}{H'} - k_{UV}$ (cm²mJ⁻¹), Eq. 15 becomes:

$$ST = \ln (10) \frac{\Phi_{HO} \varepsilon_{H2O2} k_{HO,probe} [H_2 O_2]}{U_{\lambda} k'_{HO}}$$
 Eq. 16

Because the contribution from H_2O_2 to overall ST was not subtracted initially, it can be subtracted from ST determined by Eq. 16 to determine the ST that is based on the sample's background matrix alone.

References

Lopez, A., Bozzi, A., Mascolo, G., and Kiwi, J. (2003). Kinetic investigation on UV and UV/H_2O_2 degradations of pharmaceutical intermediates in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 156(1-3):121{126.

Fernando J. Beltran, Gabriel Ovejero, Juan F. Garcia-Araya, and Javier Rivas, Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 2. UV Radiation and Ozonation in the Presence of UV Radiation, Industrial & Engineering Chemistry Research 1995 34 (5), 1607-1615, DOI: 10.1021/ie00044a013.

Bolton, J.R., Stefan, M.I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates 28, 857–870 (2002). <u>https://doi.org/10.1163/15685670260469474</u>

Bolton, J. R., Beck, S. E., & Linden, K. G. (2015). Protocol for the determination of fluence (UV dose) using a low-pressure or low-pressure high-output UV lamp in bench-scale collimated beam ultraviolet experiments. *IUVA News*, *17*(1), 11-16.